Affiliation:
1. Department of Oral Physiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
Abstract
Elevations of cytoplasmic free calcium concentrations ([Ca2+]i) evoked by cholinergic agonists stimulate isotonic fluid secretion in salivary acinar cells. This process is driven by the apical exit of Cl− through Ca2+-activated Cl− channels, while Cl− enters the cytoplasm against its electrochemical gradient via a loop diuretic-sensitive Na+-K+-2Cl− cotransporter (NKCC) and/or parallel operations of Cl−-HCO3− and Na+-H+ exchangers, located in the basolateral membrane. To characterize the contributions of those activities to net Cl− secretion, we analyzed carbachol (CCh)-activated Cl− currents in submandibular acinar cells using the “gramicidin-perforated patch recording configuration.” Since the linear polypeptide antibiotic gramicidin creates monovalent cation-selective pores, CCh-activated Cl− currents in the gramicidin-perforated patch recording were carried by Cl− efflux via Cl− channels, dependent upon Cl− entry through Cl− transporters expressed in the acinar cells. CCh-evoked oscillatory Cl− currents were associated with oscillations of membrane potential. Bumetanide, a loop diuretic, decreased the CCh-activated Cl− currents and hyperpolarized the membrane potential. In contrast, neither methazolamide, a carbonic anhydrase inhibitor, nor elimination of external HCO3− had significant effects, suggesting that the cotransporter rather than parallel operations of Cl−-HCO3− and Na+-H+ exchangers is the primary Cl− uptake pathway. Pharmacological manipulation of the activities of the Ca2+-activated Cl− channel and the NKCC revealed that the NKCC plays a substantial role in determining the amplitude of oscillatory Cl− currents, while adjusting to the rate imposed by the Ca2+-activated Cl− channel, in the gramicidin-perforated patch configuration. By concerting with and being controlled by the cation steps, the oscillatory form of secretory Cl− movements may effectively provide a driving force for fluid secretion in intact acinar cells.
Publisher
Rockefeller University Press
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献