Gramicidin-perforated Patch Recording Revealed the Oscillatory Nature of Secretory Cl− Movements in Salivary Acinar Cells

Author:

Sugita Makoto1,Hirono Chikara1,Shiba Yoshiki1

Affiliation:

1. Department of Oral Physiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan

Abstract

Elevations of cytoplasmic free calcium concentrations ([Ca2+]i) evoked by cholinergic agonists stimulate isotonic fluid secretion in salivary acinar cells. This process is driven by the apical exit of Cl− through Ca2+-activated Cl− channels, while Cl− enters the cytoplasm against its electrochemical gradient via a loop diuretic-sensitive Na+-K+-2Cl− cotransporter (NKCC) and/or parallel operations of Cl−-HCO3− and Na+-H+ exchangers, located in the basolateral membrane. To characterize the contributions of those activities to net Cl− secretion, we analyzed carbachol (CCh)-activated Cl− currents in submandibular acinar cells using the “gramicidin-perforated patch recording configuration.” Since the linear polypeptide antibiotic gramicidin creates monovalent cation-selective pores, CCh-activated Cl− currents in the gramicidin-perforated patch recording were carried by Cl− efflux via Cl− channels, dependent upon Cl− entry through Cl− transporters expressed in the acinar cells. CCh-evoked oscillatory Cl− currents were associated with oscillations of membrane potential. Bumetanide, a loop diuretic, decreased the CCh-activated Cl− currents and hyperpolarized the membrane potential. In contrast, neither methazolamide, a carbonic anhydrase inhibitor, nor elimination of external HCO3− had significant effects, suggesting that the cotransporter rather than parallel operations of Cl−-HCO3− and Na+-H+ exchangers is the primary Cl− uptake pathway. Pharmacological manipulation of the activities of the Ca2+-activated Cl− channel and the NKCC revealed that the NKCC plays a substantial role in determining the amplitude of oscillatory Cl− currents, while adjusting to the rate imposed by the Ca2+-activated Cl− channel, in the gramicidin-perforated patch configuration. By concerting with and being controlled by the cation steps, the oscillatory form of secretory Cl− movements may effectively provide a driving force for fluid secretion in intact acinar cells.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3