Interactions of Calcium with Sodium and Potassium in Membrane Potentials of the Lobster Giant Axon

Author:

Adelman W. J.1,Dalton J. C.1

Affiliation:

1. From the Department of Physiology and the Department of Biology, The University of Buffalo, Buffalo.

Abstract

Experiments were performed on the lobster giant axon to determine the relation between intracellular spike amplitude and external calcium ion concentration. Action potential decline in low external calcium is greatly accelerated by simultaneous removal of external sodium ion. Correlation of the time course of spike decline in low calcium-low sodium solution with the time courses of spike decline in low calcium alone and in low sodium alone indicates that the effect of simultaneous removal of both ions is significantly greater than the sum of the individual effects. For a given time of treatment, spike amplitude was a function of external calcium concentration. While spike height is proportional to the log of the external calcium concentration over the range 2.5 to 50 millimolar, the proportionality constant is dependent upon the sodium concentration. Under the conditions of low external sodium (50 per cent reduction) the slope of the linear relationship between the spike height and the log of the external calcium concentration is about 5 times greater than in normal external sodium. Decreasing external calcium concentration and simultaneously increasing external potassium concentration produce a greater spike reduction than the arithmetic sum of spike reductions in low calcium alone and in high potassium alone. It is suggested that calcium interacts strongly with sodium and potassium in the spike-generating mechanism. A theoretical basis for these results is discussed.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transport properties of vertebrate blood-nerve barrier: Comparison with blood-brain barrier;Progress in Neurobiology;1994-06

2. A minimal biophysical model for an excitable and oscillatory neuron;Biological Cybernetics;1991-10

3. Calcium transfer at the blood-nerve barrier of the frog sciatic nerve;Brain Research;1988-10

4. Literatur;Anaesthesiology and Resuscitation / Anaesthesiologie und Wiederbelebung / Anesthésiologie et Réanimation;1987

5. Mechanisms involved in differential conduction of potentials at high frequency in a branching axon.;The Journal of Physiology;1979-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3