AN ELECTROPHORETIC STUDY OF MIXTURES OF OVALBUMIN AND YEAST NUCLEIC ACID

Author:

Longsworth Lewis G.1,MacInnes D. A.1

Affiliation:

1. From the Laboratories of The Rockefeller Institute for Medical Research

Abstract

Electrophoretic patterns of mixtures of ovalbumin and yeast nucleic acid indicate that the constituents migrate independently of each other in buffer solutions of 0.1 ionic strength and at pH values somewhat higher than the isoelectric point of the protein. In the isoelectric region, however, the patterns from the two sides of the channel exhibit asymmetries that can be explained by assuming the existence in the mixture of appreciable concentrations of a reversibly dissociable complex between the components. Formation of this complex is favored by increasing concentrations of the components and decreasing ionic strength. At pH values below the isoelectric point partial precipitation of the complex occurs. The patterns obtained from each side of the channel in the electrophoresis of a mixture of two components, which form a dissociable complex, indicate only two boundaries, aside from the δ and ϵ effects. One of these is a normal boundary whose displacement is proportional to the mobility of a component that has separated from the mixture. In the other boundary, however, dissociation of the complex occurs and consequently the displacement of this boundary corresponds to the mobility of neither component nor to that of the complex. Moreover, the areas under the refractive index gradient curves are not proportional to the stoichiometric concentrations of the components. However, equations are developed with the aid of which an electrophoretic analysis of the mixture is possible. This analysis requires the use of data from the patterns of both channels.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3