REGULATORY MECHANISMS OF CELLULAR RESPIRATION

Author:

Barron E. S. Guzman1,Muntz John A.1,Gasvoda Betty1

Affiliation:

1. From the Argonne National Laboratory, the Chemical Division, Department of Medicine of The University of Chicago, Chicago, and The Marine Biological Laboratory, Woods Hole

Abstract

Uranium as UO2(NO3)2 combines reversibly with proteins. The degree of dissociation of this combination depends, among other factors, on the H+ concentration. At pH 7.3 the U-albumin complex was easily dissociated on addition of citrate, while at pH 3.8 it was not. Uranium inhibited reversibly a number of enzyme systems. Uranium enzyme inhibitions could be reversed on addition of certain hydroxypolycarboxylic acids (citric acid, α-hydroxyaspartic acid, malic acid); in no case, however, did phosphate have any effect. In cell-free yeast juice, the fermentation of glucose-hexosediphosphate was inhibited by UO2(NO3)2. Slight reactivation occurred on addition of phosphate. In living yeast cells, the fermentation and oxidation of glucose was inhibited by small amounts of UO2(NO3)2 (7,7 micrograms per mg. dry weight), while the oxidation of acetic acid, ethyl alcohol, malic and citric acids, was not affected at all. U inhibition in living yeast cells at pH 7.3 was completely released on addition of small amounts of phosphate, adenosinetriphosphate, and citrate, while at pH 3.8 U inhibition was not released by phosphate and citrate. At saturation, one yeast cell contained 7.06 x 106 molecules of uranium. Lactic dehydrogenase was not inhibited by U while the oxidation of lactic acid by gonococci was inhibited. Addition of phosphate released this inhibition. The U inhibition of liver succinoxidase was unaffected by phosphate, while the U inhibition of the oxidation of succinate by E. coli was released by phosphate. It has been concluded from these experiments that U inhibition of cell metabolism is due to combination of the metal with the protein portion of the cell membrane. Uranium is presented as an example of surface inhibition.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3