Vasoconstrictors inhibit ATP-sensitive K+ channels in arterial smooth muscle through protein kinase C.

Author:

Bonev A D1,Nelson M T1

Affiliation:

1. Department of Pharmacology, University of Vermont, Colchester 05446-2500, USA.

Abstract

The effects of vasoconstrictor-receptor (neuropeptide Y, alpha-adrenergic, serotonergic, histaminergic) stimulation on currents through ATP-sensitive potassium (KATP) channels in arterial smooth muscle cells were examined. Whole-cell KATP currents, activated by the synthetic KATP channel opener pinacidil or by the endogenous vasodilator, calcitonin gene-related peptide, which acts through protein kinase A, were measured in smooth muscle cells isolated from mesenteric arteries of rabbit. Stimulation of NPY-, alpha 1-, serotonin (5-HT2)-, and histamine (H1)-receptors inhibited KATP currents by 40-56%. The signal transduction pathway that links these receptors to KATP channels was investigated. An inhibitor of phospholipase C (D609) and of protein kinase C (GF 109203X) reduced the inhibitory effect of these vasoconstrictors on KATP currents from 40-56% to 11-23%. Activators of protein kinase C, a diacylglycerol analogue and phorbol 12-myristate 13-acetate (PMA), inhibited KATP currents by 87.3 and 84.2%, respectively. KATP currents, activated by calcitonin gene-related peptide, were also inhibited (47-87%) by serotonin, phenylephrine, and PMA. We propose that KATP channels in these arterial myocytes are subject to dual modulation by protein kinase C (inhibition) and protein kinase A (activation).

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electro-metabolic signaling;Journal of General Physiology;2024-01-10

2. Pericytes and the Control of Blood Flow in Brain and Heart;Annual Review of Physiology;2023-02-10

3. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes;Frontiers in Cellular Neuroscience;2020-12-18

4. PIP2: A critical regulator of vascular ion channels hiding in plain sight;Proceedings of the National Academy of Sciences;2020-08-06

5. Olanzapine-mediated cardiotoxicity is associated with altered energy metabolism in isolated rat hearts;Acta Biochimica Polonica;2020-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3