[K+] dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1).

Author:

Lopatin A N1,Nichols C G1

Affiliation:

1. Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

The effects of permeant (K+) ions on polyamine (PA)-induced rectification of cloned strong inwardly rectifying channels (IRK1, Kir2.1) expressed in Xenopus oocytes were examined using patch-clamp techniques. The kinetics of PA-induced rectification depend strongly on external, but not internal, K+ concentration. Increasing external [K+] speeds up "activation" kinetics and shifts rectification to more positive membrane potentials. The shift of rectification is directly proportional to the shift in the K+ reversal potential (EK) with slope factors +0.62, +0.81, and +0.91 for 1 mM putrescine (Put), 100 microM spermidine and 20 microM spermine (Spm), respectively. The time constant of current activation, resulting from unblock of Spm, also shifts directly in proportion to EK with slope factor +1.1. Increasing internal [K+] slows down activation kinetics and has a much weaker relieving effect on block by PA: Spm-induced rectification and time constant of activation (Spm unblock) shift directly in proportion to the corresponding change in EK with slope factors -0.15 and +0.31, respectively, for 20 microM Spm. The speed up of activation kinetics caused by increase of external [K+] cannot be reversed by equal increase of internal [K+]. The data are consistent with the hypothesis that the conduction pathway of strong inward rectifiers is a long and narrow pore with multiple binding sites for PA and K+.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3