MECHANISMS OF BIOELECTRIC ACTIVITY IN ELECTRIC TISSUE

Author:

Altamirano Mario1,Coates Christopher W.1,Grundfest Harry1,Nachmansohn David1

Affiliation:

1. From the Department of Neurology, College of Physicians and Surgeons, Columbia University, and the New York Zoological Society, New York

Abstract

1. A preparation is described consisting of one or several layers of innervated cells of the electric organ of Electrophorus electricus. 2. Each plaque is multiply innervated and only at its caudal face. The nerve fibers may derive from two or more different nerve trunks. 3. During activity the innervated face becomes negative relative to the non-innervated. 4. The first electrical response of the cell to an increasing neural volley is graded and has the character of a prepotential. At a critical size of the prepotential the cell discharges with an all-or-nothing spike. 5. Both responses have durations of about 2 msec. 6. A neural volley which does not cause the spike discharge facilitates the discharge of the cell by a second subsequent volley in the same nerve (temporal facilitation). 7. The period of facilitation lasts ca. 900 msec. During the first 100 msec., the facilitation is large enough to cause a spike. In the later portion only the prepotential is facilitated. No electrical concomitant has been detected. 8. Neural volleys reaching the plaque from different trunks interact at the cell to produce a period of facilitation lasting only about 2 msec. This interaction is interpreted as spatial summation. 9. In a population of cells, simultaneous stimulation of 2 nerves causes a smaller discharge than the sum of the two isolated responses (occlusion). 10. Cells denervated for 7 weeks or more can be excited directly, but only by a current flow outward through the caudal face. 11. Weak direct stimulation causes a prepotential in the denervated plaque. On increasing the stimulus the prepotential increases to a critical size when a spike develops. The duration of both responses is about 2 msec. 12. The absolutely refractory period of the denervated cell is about 1.5 msec. and relative refractoriness lasts about 15 msec. 13. Direct stimulation causes slight facilitation lasting as long as 200 msec. 14. Repetitive stimulation of the nerve at low frequencies (2 to 3 per second) causes rapid "fatigue" of transmission. The denervated plaque, however, responds for several minutes to repetitive direct stimulation at high frequencies (25 per second).

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electric organs;Fish Physiology;2023

2. Electrical Stimulation and Cellular Behaviors in Electric Field in Biomedical Research;Materials;2021-12-27

3. Phenomena of synchronized response in biosystems and the possible mechanism;Biochemical and Biophysical Research Communications;2018-02

4. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus;Journal of Experimental Biology;2013-07-01

5. Evolution of Purinergic Signalling;Purinergic Signalling and the Nervous System;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3