Fluorometric Studies of Oxidative Metabolism in Isolated Papillary Muscle of the Rabbit

Author:

Chapman J. Brian1

Affiliation:

1. From the Department of Physiology and Pharmacology, Duke University Medical Center, Durham, North Carolina 27710

Abstract

The fluorometric technique for measuring the levels of reduced pyridine nucleotides was used to study oxidative metabolism in isolated rabbit papillary muscle at 23°C. The 100% standard level of tissue fluorescence was defined as that measured for muscles resting in oxygenated 10 mM pyruvate solution. This level increased 15% with anoxia and decreased 45% with stimulation in substrate-free solution. Thus, about one-half of the standard tissue fluorescence was metabolically labile and this labile fraction is suggested to be mitochondrial in origin. Decreased tissue fluorescence following mechanical activity was identified with increased oxidation of mitochondrial reduced nicotinamide adenine dinucleotide (NADH) owing to stimulation by adenosine diphosphate (ADP), released during activity, of mitochondrial respiration. The kinetics of the fluorescence transients were slowed fourfold by removal of pyruvate. This effect was not significantly reversed by addition of 10 mM glucose. The time integrals of the fluorescence transients were linearly related to the amounts of mechanical activity in the presence, but not in the absence, of pyruvate. A positive correlation was observed between the steady-state peak tension at constant stimulus rate and the resting level of reduction of pyridine nucleotides in various media. The fluorometric results are interpreted to be indicative of the steady and transient states established by the substrate dehydrogenases and the respiratory chain during oxidative phosphorylation in mitochondria.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3