Slowing of sodium current inactivation by ruthenium red in snail neurons.

Author:

Stimers J R,Byerly L

Abstract

The effects of ruthenium red (RuR) were tested on the membrane currents of internally perfused, voltage-clamped nerve cell bodies from the snail Limnea stagnalis. Bath application of nanomolar concentrations of RuR produces a prolonged Na current that decays approximately 40 times slower than the normal Na current in these cells. The relationship between the reversal potential for the prolonged Na current and the intracellular concentration of Na+ agrees well with the constant-field equation, assuming a small permeability for Cs+. Because a strong correlation was found between the magnitude of the normal Na current and that of the prolonged Na current, it is concluded that the prolonged Na current flows through the normal Na channels. This conclusion is supported by the similar selectivities, voltage dependencies, and tetrodotoxin (TTX) sensitivities of these two currents. This action of RuR to slow the inactivation of the Na channel was not observed at concentrations below 1 nM, but was complete at 10 nM. When the concentration of RuR is increased to 0.1 mM, the Ca current in these cells is blocked; but at this high concentration RuR also reduces the outward voltage-dependent currents and resting membrane resistance. Therefore, RuR is not a good Ca blocker because of its lack of specificity. However, its action of slowing Na current inactivation is very specific and could prove to be useful in studying the inactivation of the Na channel.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3