Augmentation and facilitation of transmitter release. A quantitative description at the frog neuromuscular junction.

Author:

Zengel J E,Magleby K L

Abstract

Endplate potentials were recorded from frog and toad sartorius neuromuscular junctions under conditions of greatly reduced quantal contents. The magnitudes of augmentation increased with the duration and frequency of stimulation, often increasing at an accelerating rate during 10-20-s conditioning trains. The magnitudes of the first and second components of facilitation also increased, but reached apparent steady state values within the first few seconds of stimulation. These observations could be accounted for by assuming (a) that augmentation and the first and second components of facilitation arise from underlying factors in the nerve terminal that act to increase transmitter release; (b) that each nerve impulse adds an increment to each of the underlying factors; (c) that the magnitude of the increment typically increases during the train for augmentation but remains constant for the components of facilitation; and (d) that the underlying factors decay with first-order kinetics with time constants of approximately 7 s for augmentation and 60 and 500 ms for the first and second components of facilitation, respectively. The increments of facilitation added by each impulse were about twice as large in the toad as in the frog. Facilitation was described better by assuming a power relationship between the underlying factor and the observed facilitation than by assuming a linear relationship. Augmentation was described by assuming either a linear or power relationship.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3