Function of the HVCN1 proton channel in airway epithelia and a naturally occurring mutation, M91T

Author:

Iovannisci David1,Illek Beate1,Fischer Horst1

Affiliation:

1. Children’s Hospital Oakland Research Institute, Oakland, CA 94609

Abstract

Airways secrete considerable amounts of acid. In this study, we investigated the identity and the pH-dependent function of the apical H+ channel in the airway epithelium. In pH stat recordings of confluent JME airway epithelia in Ussing chambers, Zn-sensitive acid secretion was activated at a mucosal threshold pH of ∼7, above which it increased pH-dependently at a rate of 339 ± 34 nmol × h−1 × cm−2 per pH unit. Similarly, H+ currents measured in JME cells in patch clamp recordings were readily blocked by Zn and activated by an alkaline outside pH. Small interfering RNA–mediated knockdown of HVCN1 mRNA expression in JME cells resulted in a loss of H+ currents in patch clamp recordings. Cloning of the open reading frame of HVCN1 from primary human airway epithelia resulted in a wild-type clone and a clone characterized by two sequential base exchanges (452T>C and 453G>A) resulting in a novel missense mutation, M91T HVCN1. Out of 95 human genomic DNA samples that were tested, we found one HVCN1 allele that was heterozygous for the M91T mutation. The activation of acid secretion in epithelia that natively expressed M91T HVCN1 required ∼0.5 pH units more alkaline mucosal pH values compared with wild-type epithelia. Similarly, activation of H+ currents across recombinantly expressed M91T HVCN1 required significantly larger pH gradients compared with wild-type HVCN1. This study provides both functional and molecular indications that the HVCN1 H+ channel mediates pH-regulated acid secretion by the airway epithelium. These data indicate that apical HVCN1 represents a mechanism to acidify an alkaline airway surface liquid.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3