DHPR activation underlies SR Ca2+ release induced by osmotic stress in isolated rat skeletal muscle fibers

Author:

Pickering James D.1,White Ed1,Duke Adrian M.1,Steele Derek S.1

Affiliation:

1. Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, England, UK

Abstract

Changes in skeletal muscle volume induce localized sarcoplasmic reticulum (SR) Ca2+ release (LCR) events, which are sustained for many minutes, suggesting a possible signaling role in plasticity or pathology. However, the mechanism by which cell volume influences SR Ca2+ release is uncertain. In the present study, rat flexor digitorum brevis fibers were superfused with isoosmotic Tyrode's solution before exposure to either hyperosmotic (404 mOsm) or hypoosmotic (254 mOsm) solutions, and the effects on cell volume, membrane potential (Em), and intracellular Ca2+ ([Ca2+]i) were determined. To allow comparison with previous studies, solutions were made hyperosmotic by the addition of sugars or divalent cations, or they were made hypoosmotic by reducing [NaCl]o. All hyperosmotic solutions induced a sustained decrease in cell volume, which was accompanied by membrane depolarization (by 14–18 mV; n = 40) and SR Ca2+ release. However, sugar solutions caused a global increase in [Ca2+]i, whereas solutions made hyperosmotic by the addition of divalent cations only induced LCR. Decreasing osmolarity induced an increase in cell volume and a negative shift in Em (by 15.04 ± 1.85 mV; n = 8), whereas [Ca2+]i was unaffected. However, on return to the isoosmotic solution, restoration of cell volume and Em was associated with LCR. Both global and localized SR Ca2+ release were abolished by the dihydropyridine receptor inhibitor nifedipine by sustained depolarization of the sarcolemmal or by the addition of the ryanodine receptor 1 inhibitor tetracaine. Inhibitors of the Na-K-2Cl (NKCC) cotransporter markedly inhibited the depolarization associated with hyperosmotic shrinkage and the associated SR Ca2+ release. These findings suggest (1) that the depolarization that accompanies a decrease in cell volume is the primary event leading to SR Ca2+ release, and (2) that volume-dependent regulation of the NKCC cotransporter contributes to the observed changes in Em. The differing effects of the osmotic agents can be explained by the screening of fixed charges by divalent ions.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3