Intracellular sodium affects ouabain interaction with the Na/K pump in cultured chick cardiac myocytes.

Author:

Stimers J R1,Lobaugh L A1,Liu S1,Shigeto N1,Lieberman M1

Affiliation:

1. Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

Whether a given dose of ouabain will produce inotropic or toxic effects depends on factors that affect the apparent affinity (K0.5) of the Na/K pump for ouabain. To accurately resolve these factors, especially the effect of intracellular Na concentration (Nai), we have applied three complementary techniques for measuring the K0.5 for ouabain in cultured embryonic chick cardiac myocytes. Under control conditions with 5.4 mM Ko, the value of the K0.5 for ouabain was 20.6 +/- 1.2, 12.3 +/- 1.7, and 6.6 +/- 0.4 microM, measured by voltage-clamp, Na-selective microelectrode, and equilibrium [3H]ouabain-binding techniques, respectively. A significant difference in the three techniques was the time of exposure to ouabain (30 s-30 min). Since increased duration of exposure to ouabain would increase Nai, monensin was used to raise Nai to investigate what effect Nai might have on the apparent affinity of block by ouabain. Monensin enhanced the rise in Na content induced by 1 microM ouabain. In the presence of 1 microM [3H]ouabain, total binding was found to be a saturating function of Na content. Using the voltage-clamp method, we found that the value of the K0.5 for ouabain was lowered by nearly an order of magnitude in the presence of 3 microM monensin to 2.4 +/- 0.2 microM and the magnitude of the Na/K pump current was increased about threefold. Modeling the Na/K pump as a cyclic sequence of states with a single state having high affinity for ouabain shows that changes in Nai alone are sufficient to cause a 10-fold change in K0.5. These results suggest that Nai reduces the value of the apparent affinity of the Na/K pump for ouabain in 5.4 mM Ko by increasing its turnover rate, thus increasing the availability of the conformation of the Na/K pump that binds ouabain with high affinity.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3