ON THE EFFECT OF AMMONIUM AND LITHIUM IONS UPON FROG NERVE DEPRIVED OF SODIUM

Author:

Gallego A.1,Lorente de Nó R.1

Affiliation:

1. From the Laboratories of The Rockefeller Institute for Medical Research

Abstract

An analysis has been made of the effect of ammonium and of lithium ions upon frog nerve deprived of sodium. Ammonium ions cannot substitute for sodium ions and restore the excitability of the nerve fibers; nor can they increase the L fraction of the membrane potential and the efficiency of the nerve reaction. Certain observations, however, indicate that the presence of ammonium ions outside the nerve fibers may delay the development of inexcitability in a sodium-free medium of nerve fibers restored by a moderate amount of sodium ions. Lithium ions can substitute for sodium and restore to nerve fibers of the A and C groups the ability to conduct impulses; the effect upon B fibers has not been investigated. Lithium cannot substitute for sodium in the role that sodium plays in the creation of the L fraction and in the establishment of the nerve reaction. In this respect lithium and sodium have opposite effects. This fact establishes an important difference between the two physiological responses that the nerve fibers can produce, the nerve impulse and the nerve reaction. With untreated nerve the depolarization of nerve by lithium ions at high concentrations is preceded by a phase of hyperpolarization; with nerve deprived of sodium the depolarization begins without delay.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Edward Trautner (1890–1978), a pioneer of psychopharmacology;Journal of the History of the Neurosciences;2023-10-20

2. Hyperlithemia Correction and Persistent Delirium;The Journal of Clinical Pharmacology;1994-08

3. Lithium entry into neural cells via sodium channels: A morphometric approach;Neuroscience;1982-11

4. Lithium;Disorders of Mineral Metabolism;1981

5. The effect of lithium on acetylcholine release and synthesis;Neuropharmacology;1972-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3