Fast and slow steps in the activation of sodium channels.

Author:

Armstrong C M,Gilly W F

Abstract

Kinetic features of sodium conductance (gNa) and associated gating current (Ig) were studied in voltage-clamped, internally perfused squid axons. Following a step depolarization Ig ON has several kinetic components: (a) a rapid, early phase largely preceding gNa turn-on; (b) a delayed intermediate component developing as gNa increases; and (c) a slow component continuing after gNa is fully activated. With small depolarizations the early phase shows a quick rise (less than 40 mus) and smooth decay; the slow component is not detectable. During large pulses all three components are present, and the earliest shows a rising phase or initial plateau lasting approximately 80 mus. Steady-state and kinetic features of Ig are minimally influenced by control pulse currents, provided controls are restricted to a sufficiently negative voltage range. Ig OFF following a strong brief pulse also shows a rising phase. A depolarizing prepulse producing gNa inactivation and Ig immobilization eliminates the rising phase of Ig OFF. gNa, the immobilized portion of Ig ON, and the rising phase reappear with similar time-courses when tested with a second depolarizing pulse after varying periods of repolarization. 30 mM external ZnCl2 delays and slows gNa activation, prolongs the rising phase, and slows the subsequent decay of Ig ON. Zn does not affect the kinetics of gNa tails or Ig OFF as channels close, however. We present a sequential kinetic model of Na channel activation, which adequately describes the observations. The rapid early phase of IgON is generated by a series of several fast steps, while the intermediate component reflects a subsequent step. The slow component is too slow to be clearly associated with gNa activation.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3