Light reduces the excitation efficiency in the nss mutant of the sheep blowfly Lucilia.

Author:

Barash S1,Suss E1,Stavenga D G1,Rubinstein C T1,Selinger Z1,Minke B1

Affiliation:

1. Department of Physiology, Hadassah Medical School, Hebrew University, Jerusalem, Israel.

Abstract

The nss (no steady state) phototransduction mutant of the sheep blowfly Lucilia was studied electrophysiologically using intracellular recordings. The effects of the nss mutation on the receptor potential are manifested in the following features of the light response. (a) The responses to a flash or to dim lights are close to normal, but the receptor potential decays close to the baseline level during prolonged illumination after a critical level of light intensity is reached. (b) The decline of the response is accompanied by a large reduction in responsiveness to light that recovers within 20 s in the dark. (c) The full reduction in responsiveness to light is reached when approximately 13% of the photopigment molecules are converted from rhodopsin (R) to metarhodopsin (M). (d) A maximal net pigment conversion from R to M by blue light induces persistent inactivation in the dark, without an apparent voltage response. This inactivation could be abolished at any time by M-to-R conversion with orange light. The above features of the mutant indicate that the effect of the nss mutation on the light response of Lucilia is very similar to the effects of the transient receptor potential (trp) mutation on the photoreceptor potential of Drosophila. Noise analysis and voltage measurements indicate that the decay of the receptor potential is due to a severe reduction in the rate of occurrence of the elementary voltage responses (bumps). The bumps are only slightly modified in shape and amplitude during the decline of the response to light of medium intensity. There is also a large increase in response latency during intense background illumination. These results are consistent with the hypothesis that separate, independent mechanisms determine bump triggering and bump shape and amplitude. The nss mutation affects the triggering mechanism of the bump.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration;Progress in Retinal and Eye Research;2023-01

2. TRPV1 Channel: A Noxious Signal Transducer That Affects Mitochondrial Function;International Journal of Molecular Sciences;2020-11-24

3. The Drosophila light-activated TRP and TRPL channels - Targets of the phosphoinositide signaling cascade;Progress in Retinal and Eye Research;2018-09

4. TRP Channels in Vision;Neurobiology of TRP Channels;2017-09

5. Photosensitive TRPs;Handbook of Experimental Pharmacology;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3