Voltage control of Ca2+ permeation through N-type calcium (CaV2.2) channels

Author:

Buraei Zafir12,Liang Haoya2,Elmslie Keith S.23

Affiliation:

1. Department of Biology and Health Sciences, Pace University, New York, NY 10038

2. Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112

3. The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO 63501

Abstract

Voltage-gated calcium (CaV) channels deliver Ca2+ to trigger cellular functions ranging from cardiac muscle contraction to neurotransmitter release. The mechanism by which these channels select for Ca2+ over other cations is thought to involve multiple Ca2+-binding sites within the pore. Although the Ca2+ affinity and cation preference of these sites have been extensively investigated, the effect of voltage on these sites has not received the same attention. We used a neuronal preparation enriched for N-type calcium (CaV2.2) channels to investigate the effect of voltage on Ca2+ flux. We found that the EC50 for Ca2+ permeation increases from 13 mM at 0 mV to 240 mM at 60 mV, indicating that, during permeation, Ca2+ ions sense the electric field. These data were nicely reproduced using a three-binding-site step model. Using roscovitine to slow CaV2.2 channel deactivation, we extended these measurements to voltages <0 mV. Permeation was minimally affected at these hyperpolarized voltages, as was predicted by the model. As an independent test of voltage effects on permeation, we examined the Ca2+-Ba2+ anomalous mole fraction (MF) effect, which was both concentration and voltage dependent. However, the Ca2+-Ba2+ anomalous MF data could not be reproduced unless we added a fourth site to our model. Thus, Ca2+ permeation through CaV2.2 channels may require at least four Ca2+-binding sites. Finally, our results suggest that the high affinity of Ca2+ for the channel helps to enhance Ca2+ influx at depolarized voltages relative to other ions (e.g., Ba2+ or Na+), whereas the absence of voltage effects at negative potentials prevents Ca2+ from becoming a channel blocker. Both effects are needed to maximize Ca2+ influx over the voltages spanned by action potentials.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3