Cation Metabolism in Relation to Cell Size in Synchronously Grown Tissue Culture Cell

Author:

Jung Chan1,Rothstein Aser1

Affiliation:

1. From the Department of Radiation Biology and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York.

Abstract

In randomly grown tissue culture cells (mouse leukemic lymphoblast, L5178Y) the number, volume, and Na+ and K+ content increase as an exponential function with a doubling time of 11.3 hr. In synchronously grown cells the volume increase of the population and of single cells follows the same exponential function as in randomly grown cells. In contrast, the cation content fluctuates during a single cell cycle. About 1½ hr after the cell division burst (at the beginning of the S period), a net loss of K+ occurs for a period of about 1 hr amounting to about 20% of the total K. Over the next 5 to 6 hr, the deficit in K+ is eliminated. The Na+ content shows a double fluctuation. It falls during the cell division burst, rises when the K+ content decreases, falls again when K+ content rises, and then increases again before the next cell division burst. The net fluxes of both Na+ and K+ are very small compared to the unidirectional fluxes (less than 5%), thus small changes in the balance of influx and efflux account for the changes in cation content during the growth cycle. Both unidirectional fluxes increase dramatically (by a factor of two) about 2 hr after the cell division burst, and then remain constant until after the next cell division. The pattern of electrolyte regulation during cell division does not follow a simple function such as cell number, cell surface, or cell volume, but must be related to specific internal events in the cell.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3