Kinetic analysis of single sodium channels from canine cardiac Purkinje cells.

Author:

Scanley B E1,Hanck D A1,Chay T1,Fozzard H A1

Affiliation:

1. Department of Medicine, University of Chicago, Illinois 60637.

Abstract

Single sodium channel events were recorded from cell-attached patches on single canine cardiac Purkinje cells at 10-13 degrees C. Data from four patches containing two to four channels and one patch with one channel were selected for quantitative analysis. The channels showed prominent reopening behavior at voltages near threshold, and the number of reopenings declined steeply with depolarization. Mean channel open time was a biphasic function of voltage with the maximum value (1-1.5 ms) occurring between -50 and -40 mV and lower values at more and at less hyperpolarized levels. Inactivation without opening was also prominent near threshold, and this occurrence also declined with depolarization. The waiting time distributions and the probability of being open showed voltage and time dependence as expected from whole-cell current studies. The results were analyzed in terms of a five-state Markovian kinetic model using both histogram analysis and a maximum likelihood method to estimate kinetic parameters. The kinetic parameters of the model fits were similar to those of GH3 pituitary cells (Horn, R., and C. A. Vandenberg. 1984. Journal of General Physiology. 84:505-534) and N1E115 neuroblastoma cells (Aldrich, R. W., and C. F. Stevens. Journal of Neuroscience. 7:418-431). Both histogram and maximum likelihood analysis implied that much of the voltage dependence of cardiac Na current is in its activation behavior, with inactivation showing modest voltage dependence.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3