Replacing voltage sensor arginines with citrulline provides mechanistic insight into charge versus shape

Author:

Infield Daniel T.12,Lee Elizabeth E.L.3ORCID,Galpin Jason D.12,Galles Grace D.12,Bezanilla Francisco34ORCID,Ahern Christopher A.12ORCID

Affiliation:

1. Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA

2. Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA

3. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL

4. Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL

Abstract

Voltage-dependent activation of voltage-gated cation channels results from the outward movement of arginine-bearing helices within proteinaceous voltage sensors. The voltage-sensing residues in potassium channels have been extensively characterized, but current functional approaches do not allow a distinction between the electrostatic and steric contributions of the arginine side chain. Here we use chemical misacylation and in vivo nonsense suppression to encode citrulline, a neutral and nearly isosteric analogue of arginine, into the voltage sensor of the Shaker potassium channel. We functionally characterize the engineered channels and compare them with those bearing conventional mutations at the same positions. We observe effects on both voltage sensitivity and gating kinetics, enabling dissection of the roles of residue structure versus positive charge in channel function. In some positions, substitution with citrulline causes mild effects on channel activation compared with natural mutations. In contrast, substitution of the fourth S4 arginine with citrulline causes substantial changes in the conductance–voltage relationship and the kinetics of the channel, which suggests that a positive charge is required at this position for efficient voltage sensor deactivation and channel closure. The encoding of citrulline is expected to enable enhanced precision for the study of arginine residues located in crowded transmembrane environments in other membrane proteins. In addition, the method may facilitate the study of citrullination in vivo.

Funder

National Institutes of Health

Cystic Fibrosis Foundation

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3