Nitroxyl (HNO) targets phospholamban cysteines 41 and 46 to enhance cardiac function

Author:

Keceli Gizem12ORCID,Majumdar Ananya3,Thorpe Chevon N.4ORCID,Jun Seungho2,Tocchetti Carlo G.5ORCID,Lee Dong I.2,Mahaney James E.6,Paolocci Nazareno27,Toscano John P.1ORCID

Affiliation:

1. Department of Chemistry, Johns Hopkins University, Baltimore, MD

2. Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD

3. Biomolecular NMR Center, Johns Hopkins University, Baltimore, MD

4. Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA

5. University of Naples “Federico II”, Naples, Italy

6. Edward Via College of Osteopathic Medicine, Blacksburg, VA

7. Department of Biomedical Sciences, University of Padova, Padova, Italy

Abstract

Nitroxyl (HNO) positively modulates myocardial function by accelerating Ca2+ reuptake into the sarcoplasmic reticulum (SR). HNO-induced enhancement of myocardial Ca2+ cycling and function is due to the modification of cysteines in the transmembrane domain of phospholamban (PLN), which results in activation of SR Ca2+-ATPase (SERCA2a) by functionally uncoupling PLN from SERCA2a. However, which cysteines are modified by HNO, and whether HNO induces reversible disulfides or single cysteine sulfinamides (RS(O)NH2) that are less easily reversed by reductants, remain to be determined. Using an 15N-edited NMR method for sulfinamide detection, we first demonstrate that Cys46 and Cys41 are the main targets of HNO reactivity with PLN. Supporting this conclusion, mutation of PLN cysteines 46 and 41 to alanine reduces the HNO-induced enhancement of SERCA2a activity. Treatment of WT-PLN with HNO leads to sulfinamide formation when the HNO donor is in excess, whereas disulfide formation is expected to dominate when the HNO/thiol stoichiometry approaches a 1:1 ratio that is more similar to that anticipated in vivo under normal, physiological conditions. Thus, 15N-edited NMR spectroscopy detects redox changes on thiols that are unique to HNO, greatly advancing the ability to detect HNO footprints in biological systems, while further differentiating HNO-induced post-translational modifications from those imparted by other reactive nitrogen or oxygen species. The present study confirms the potential of HNO as a signaling molecule in the cardiovascular system.

Funder

National Science Foundation

American Heart Association

National Institutes of Health

Magic-That-Matters

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3