Author:
Tsacopoulos M,Poitry S,Borsellino A
Abstract
Double-barreled O2 microelectrodes were used to study O2 diffusion and consumption in the superfused drone (Apis mellifera) retina in darkness at 22 degrees C. Po2 was measured at different sites in the bath and retinas. It was found that diffusion was essentially in one dimension and that the rate of O2 consumption (Q) was practically constant (on the macroscale) down to Po2 s less than 20 mm Hg, a situation that greatly simplified the analysis. The value obtained for Q was 18 +/- 0.7 (SEM) microliter O2/cm3 tissue . min (n = 10), and Krogh's permeation coefficient (alpha D) was 3.24 +/- 0.18 (SEM) X 10(-5) ml O1/min . atm . cm (n = 10). Calculations indicate that only a small fraction of this Q in darkness is necessary for the energy requirements of the sodium pump. the diffusion coefficient (D) in the retina was measured by abruptly cutting off diffusion from the bath and analyzing the time-course of the fall in Po2 at the surface of the tissue. The mean value of D was 1.03 +/- 0.08 (SEM) X 10(-5) cm2/s (n = 10). From alpha D and D, the solubility coefficient alpha was calculated to be 54 +/- 4.0 (SEM) microliter O2 STP/cm3 . atm (n = 10), approximately 1.8 times that for water.
Publisher
Rockefeller University Press
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献