Mechanism and potential sites of potassium interaction with glutamate transporters

Author:

Wang Jiali1ORCID,Zhang Kaiqi1,Goyal Puja1,Grewer Christof1ORCID

Affiliation:

1. Department of Chemistry, Binghamton University, Binghamton, NY

Abstract

In the mammalian glutamate transporters, countertransported intracellular K+ is essential for relocating the glutamate binding site to the extracellular side of the membrane. This K+-dependent process is believed to be rate limiting for the transport cycle. In contrast, extracellular K+ induces glutamate release upon transporter reversal. Here, we analyzed potential K+ binding sites using molecular dynamics (MD) simulations and site-directed mutagenesis. Two candidate sites were identified by spontaneous K+ binding in MD simulations, one site (K1 site) overlapping with the Na1 Na+ binding site and the K2 site being localized under hairpin loop 2 (HP2). Mutations to conserved amino acid residues in these sites resulted in several transporters that were defective in K+-induced reverse transport and which bound K+ with reduced apparent affinity compared with the wild-type transporter. However, external K+ interaction was abolished in only one mutant transporter EAAC1D454A in the K1 site. Our results, for the first time, directly demonstrate effects of K1-site mutations on K+ binding, in contrast to previous reports on K+ binding sites based on indirect evidence. We propose that K+ binding to the K1 site is responsible for catalyzing the relocation step, whereas binding to the K2 site may have an as-of-yet unidentified regulatory function.

Funder

National Science Foundation

National Institutes of Health

State University of New York at Binghamton

State University of New York

San Diego Supercomputer Center

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3