Thermal modulation of epicardial Ca2+ dynamics uncovers molecular mechanisms of Ca2+ alternans

Author:

Millet Jose1,Aguilar-Sanchez Yuriana23ORCID,Kornyeyev Dmytro4,Bazmi Maedeh3ORCID,Fainstein Diego54,Copello Julio A.6,Escobar Ariel L.4ORCID

Affiliation:

1. Institute of Information and Communication Technologies, Universitat Politècnica de València and Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Valencia, Spain

2. Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL

3. School of Natural Sciences, University of California, Merced, Merced, CA

4. Department of Bioengineering, School of Engineering, University of California Merced, Merced, CA

5. Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Entre Ríos, Argentina

6. Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL

Abstract

Ca2+ alternans (Ca-Alts) are alternating beat-to-beat changes in the amplitude of Ca2+ transients that frequently occur during tachycardia, ischemia, or hypothermia that can lead to sudden cardiac death. Ca-Alts appear to result from a variation in the amount of Ca2+ released from the sarcoplasmic reticulum (SR) between two consecutive heartbeats. This variable Ca2+ release has been attributed to the alternation of the action potential duration, delay in the recovery from inactivation of RYR Ca2+ release channel (RYR2), or an incomplete Ca2+ refilling of the SR. In all three cases, the RYR2 mobilizes less Ca2+ from the SR in an alternating manner, thereby generating an alternating profile of the Ca2+ transients. We used a new experimental approach, fluorescence local field optical mapping (FLOM), to record at the epicardial layer of an intact heart with subcellular resolution. In conjunction with a local cold finger, a series of images were recorded within an area where the local cooling induced a temperature gradient. Ca-Alts were larger in colder regions and occurred without changes in action potential duration. Analysis of the change in the enthalpy and Q10 of several kinetic processes defining intracellular Ca2+ dynamics indicated that the effects of temperature change on the relaxation of intracellular Ca2+ transients involved both passive and active mechanisms. The steep temperature dependency of Ca-Alts during tachycardia suggests Ca-Alts are generated by insufficient SERCA-mediated Ca2+ uptake into the SR. We found that Ca-Alts are heavily dependent on intra-SR Ca2+ and can be promoted through partial pharmacologic inhibition of SERCA2a. Finally, the FLOM experimental approach has the potential to help us understand how arrhythmogenesis correlates with the spatial distribution of metabolically impaired myocytes along the myocardium.

Funder

National Institutes of Health

Eskridge Foundation

Publisher

Rockefeller University Press

Subject

Physiology

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3