Recordings from neuron–HEK cell cocultures reveal the determinants of miniature excitatory postsynaptic currents

Author:

Chiang Chung-Wei1,Shu Wen-Chi1,Wan Jun1,Weaver Beth A.1,Jackson Meyer B.1ORCID

Affiliation:

1. Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI

Abstract

Spontaneous exocytosis of single synaptic vesicles generates miniature synaptic currents, which provide a window into the dynamic control of synaptic transmission. To resolve the impact of different factors on the dynamics and variability of synaptic transmission, we recorded miniature excitatory postsynaptic currents (mEPSCs) from cocultures of mouse hippocampal neurons with HEK cells expressing the postsynaptic proteins GluA2, neuroligin 1, PSD-95, and stargazin. Synapses between neurons and these heterologous cells have a molecularly defined postsynaptic apparatus, while the compact morphology of HEK cells eliminates the distorting effect of dendritic filtering. HEK cells in coculture produced mEPSCs with a higher frequency, larger amplitude, and more rapid rise and decay than neurons from the same culture. However, mEPSC area indicated that nerve terminals in synapses with both neurons and HEK cells release similar populations of vesicles. Modulation by the glutamate receptor ligand aniracetam revealed receptor contributions to mEPSC shape. Dendritic cable effects account for the slower mEPSC rise in neurons, whereas the slower decay also depends on other factors. Lastly, expression of synaptobrevin transmembrane domain mutants in neurons slowed the rise of HEK cell mEPSCs, thus revealing the impact of synaptic fusion pores. In summary, we show that cocultures of neurons with heterologous cells provide a geometrically simplified and molecularly defined system to investigate the time course of synaptic transmission and to resolve the contribution of vesicles, fusion pores, dendrites, and receptors to this process.

Funder

National Institutes of Health

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3