Identification of PUFA interaction sites on the cardiac potassium channel KCNQ1

Author:

Yazdi Samira1,Nikesjö Johan1,Miranda Williams2,Corradi Valentina2ORCID,Tieleman D. Peter2ORCID,Noskov Sergei Yu.2ORCID,Larsson H. Peter3ORCID,Liin Sara I.1ORCID

Affiliation:

1. Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden

2. Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada

3. Department of Physiology and Biophysics, University of Miami, Miami, FL

Abstract

Polyunsaturated fatty acids (PUFAs), but not saturated fatty acids, modulate ion channels such as the cardiac KCNQ1 channel, although the mechanism is not completely understood. Using both simulations and experiments, we find that PUFAs interact directly with the KCNQ1 channel via two different binding sites: one at the voltage sensor and one at the pore. These two amphiphilic binding pockets stabilize the negatively charged PUFA head group by electrostatic interactions with R218, R221, and K316, while the hydrophobic PUFA tail is selectively stabilized by cassettes of hydrophobic residues. The rigid saturated tail of stearic acid prevents close contacts with KCNQ1. By contrast, the mobile tail of PUFA linoleic acid can be accommodated in the crevice of the hydrophobic cassette, a defining feature of PUFA selectivity in KCNQ1. In addition, we identify Y268 as a critical PUFA anchor point underlying fatty acid selectivity. Combined, this study provides molecular models of direct interactions between PUFAs and KCNQ1 and identifies selectivity mechanisms. Long term, this understanding may open new avenues for drug development based on PUFA mechanisms.

Funder

Swedish National Infrastructure for Computing

National Institutes of Health

Compute Canada

Swedish Society for Medical Research

Swedish Research Council

European Research Council

Horizon 2020

Center for Systems Neurobiology

Linköping University

Canadian Institutes of Health Research

Natural Scientific and Engineering Research Council of Canada

Canada Research Chairs

Vanier Canada

Killam

Alberta Innovates Health Solutions

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3