Influence of the Ionic Composition of Fluid Medium on Red Cell Aggregation

Author:

Jan Kung-Ming1,Chien Shu1

Affiliation:

1. From the Department of Physiology, Laboratory of Hemorheology, College of Physicians and Surgeons, Columbia University, New York 10032

Abstract

The effects of ionic strength and cationic valency of the fluid medium on the surface potential and dextran-induced aggregation of red blood cells (RBC's) were investigated. The zeta potential was calculated from cell mobility in a microelectrophoresis apparatus; the degree of aggregation of normal and neuraminidase-treated RBC's in dextrans (Dx 40 and Dx 80) was quantified by microscopic observation, measurement of erythrocyte sedimentation rate, and determination of low-shear viscosity. A decrease in ionic strength caused a reduction in aggregation of normal RBC's in dextrans, but had no effect on the aggregation of neuraminidase-treated RBC's. These findings reflect an increase in electrostatic repulsive force between normal RBC's by the reduction in ionic strength due to (a) a decrease in the screening of surface charge by counter-ions and (b) an increase in the thickness of the electric double layer. Divalent cations (Ca++, Mg++, and Ba++) increased aggregation of normal RBC's in dextrans, but had no effect on the aggregation of neuraminidase-treated RBC's. These effects of the divalent cations are attributable to a decrease in surface potential of normal RBC's and a shrinkage of the electric double layer. It is concluded that the surface charge of RBC's plays a significant role in cell-to-cell interactions.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3