Mechanosensitive channel MscS is critical for termination of the bacterial hypoosmotic permeability response

Author:

Moller Elissa12ORCID,Britt Madolyn12ORCID,Schams Anthony1ORCID,Cetuk Hannah1ORCID,Anishkin Andriy1ORCID,Sukharev Sergei13ORCID

Affiliation:

1. Department of Biology, University of Maryland, College Park 1 , College Park, MD, USA

2. Biophysics Graduate Program, University of Maryland, College Park 3 , College Park, MD, USA

3. Institute for Physical Science and Technology, University of Maryland, College Park 2 , College Park, MD, USA

Abstract

Free-living microorganisms are subjected to drastic changes in osmolarity. To avoid lysis under sudden osmotic down-shock, bacteria quickly expel small metabolites through the tension-activated channels MscL, MscS, and MscK. We examined five chromosomal knockout strains, ∆mscL, ∆mscS, a double knockout ∆mscS ∆mscK, and a triple knockout ∆mscL ∆mscS ∆mscK, in comparison to the wild-type parental strain. Stopped-flow experiments confirmed that both MscS and MscL mediate fast osmolyte release and curb cell swelling, but osmotic viability assays indicated that they are not equivalent. MscS alone was capable of rescuing the cell population, but in some strains, MscL did not rescue and additionally became toxic in the absence of both MscS and MscK. Furthermore, MscS was upregulated in the ∆mscL strain, suggesting either a crosstalk between the two genes/proteins or the influence of cell mechanics on mscS expression. The data shows that for the proper termination of the permeability response, the high-threshold (MscL) and the low-threshold (MscS/MscK) channels must act sequentially. In the absence of low-threshold channels, at the end of the release phase, MscL should stabilize membrane tension at around 10 mN/m. Patch-clamp protocols emulating the tension changes during the release phase indicated that the non-inactivating MscL, residing at its own tension threshold, flickers and produces a protracted leakage. The MscS/MscK population, when present, stays open at this stage to reduce tension below the MscL threshold and silence the large channel. When MscS reaches its own threshold, it inactivates and thus ensures proper termination of the hypoosmotic permeability response. This functional interplay between the high- and low-threshold channels is further supported by the compromised osmotic survival of bacteria expressing non-inactivating MscS mutants.

Funder

National Institutes of Health

National Science Foundation

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3