ORAI3 is dispensable for store-operated Ca2+ entry and immune responses by lymphocytes and macrophages

Author:

Wang Liwei1,Noyer Lucile1ORCID,Wang Yin-Hu1ORCID,Tao Anthony Y.1,Li Wenyi1ORCID,Zhu Jingjie1,Saavedra Pedro1,Hoda Syed T.1ORCID,Yang Jun1,Feske Stefan1ORCID

Affiliation:

1. Department of Pathology, New York University Grossman School of Medicine, New York, NY 1

Abstract

Ca2+ signals regulate the function of many immune cells and promote immune responses to infection, cancer, and autoantigens. Ca2+ influx in immune cells is mediated by store-operated Ca2+ entry (SOCE) that results from the opening of Ca2+ release-activated Ca2+ (CRAC) channels. The CRAC channel is formed by three plasma membrane proteins, ORAI1, ORAI2, and ORAI3. Of these, ORAI1 is the best studied and plays important roles in immune function. By contrast, the physiological role of ORAI3 in immune cells remains elusive. We show here that ORAI3 is expressed in many immune cells including macrophages, B cells, and T cells. To investigate ORAI3 function in immune cells, we generated Orai3−/− mice. The development of lymphoid and myeloid cells in the thymus and bone marrow was normal in Orai3−/− mice, as was the composition of immune cells in secondary lymphoid organs. Deletion of Orai3 did not affect SOCE in B cells and T cells but moderately enhanced SOCE in macrophages. Orai3-deficient macrophages, B cells, and T cells had normal effector functions in vitro. Immune responses in vivo, including humoral immunity (T cell dependent or independent) and antitumor immunity, were normal in Orai3−/− mice. Moreover, Orai3−/− mice showed no differences in susceptibility to septic shock, experimental autoimmune encephalomyelitis, or collagen-induced arthritis. We conclude that despite its expression in myeloid and lymphoid cells, ORAI3 appears to be dispensable or redundant for physiological and pathological immune responses mediated by these cells.

Funder

National Institutes of Health

Irma T. Hirsch Trust

National Multiple Sclerosis Society

Sass Foundation for Medical Research

Rodent Genetic Engineering Lab

NYU Langone’s Laura and Isaac Perlmutter Cancer Center

National Cancer Institute

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3