Machine learning meets Monte Carlo methods for models of muscle’s molecular machinery to classify mutations

Author:

Asencio Anthony1234ORCID,Malingen Sage24ORCID,Kooiker Kristina B.345ORCID,Powers Joseph D.6ORCID,Davis Jennifer2475ORCID,Daniel Thomas124ORCID,Moussavi-Harami Farid3475ORCID

Affiliation:

1. Department of Biology, University of Washington 1 , Seattle, WA, USA

2. Department of Bioengineering, University of Washington 2 , Seattle, WA, USA

3. Division of Cardiology, University of Washington 3 , Seattle, WA, USA

4. Center for Transnational Muscle Research, University of Washington 4 , Seattle, WA, USA

5. Center for Cardiovascular Biology, University of Washington 6 , Seattle, WA, USA

6. Department of Bioengineering, University of California, San Diego 7 , San Diego, CA, USA

7. Department of Laboratory Medicine Pathology, University of Washington 5 , Seattle, WA, USA

Abstract

The timing and magnitude of force generation by a muscle depend on complex interactions in a compliant, contractile filament lattice. Perturbations in these interactions can result in cardiac muscle diseases. In this study, we address the fundamental challenge of connecting the temporal features of cardiac twitches to underlying rate constants and their perturbations associated with genetic cardiomyopathies. Current state-of-the-art metrics for characterizing the mechanical consequence of cardiac muscle disease do not utilize information embedded in the complete time course of twitch force. We pair dimension reduction techniques and machine learning methods to classify underlying perturbations that shape the timing of twitch force. To do this, we created a large twitch dataset using a spatially explicit Monte Carlo model of muscle contraction. Uniquely, we modified the rate constants of this model in line with mouse models of cardiac muscle disease and varied mutation penetrance. Ultimately, the results of this study show that machine learning models combined with biologically informed dimension reduction techniques can yield excellent classification accuracy of underlying muscle perturbations.

Funder

Center for Translational Muscle Research

National Institutes of Health

American Heart Association

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3