Phosphorylation of RyR2 simultaneously expands the dyad and rearranges the tetramers

Author:

Asghari Parisa1ORCID,Scriven David R.L.1ORCID,Shahrasebi Saba1ORCID,Valdivia Hector H.2ORCID,Alsina Katherina M.3ORCID,Valdivia Carmen R.2ORCID,Navarro-Garcia J. Alberto4ORCID,Wehrens Xander H.T.4ORCID,Moore Edwin D.W.1ORCID

Affiliation:

1. Life Sciences Institute, University of British Columbia 1 Department of Cellular and Physiological Sciences, , Vancouver, Canada

2. University of Wisconsin School of Medicine and Public Health 2 Department of Medicine, , Madison, WI, USA

3. Castle Biosciences Inc. 3 , Friendswood, TX, USA

4. Cardiovascular Research Institute, Baylor College of Medicine 4 Department of Integrative Physiology, , Houston, TX, USA

Abstract

We have previously demonstrated that type II ryanodine receptors (RyR2) tetramers can be rapidly rearranged in response to a phosphorylation cocktail. The cocktail modified downstream targets indiscriminately, making it impossible to determine whether phosphorylation of RyR2 was an essential element of the response. Here, we used the β-agonist isoproterenol and mice homozygous for one of the following clinically relevant mutations: S2030A, S2808A, S2814A, or S2814D. We measured the length of the dyad using transmission electron microscopy (TEM) and directly visualized RyR2 distribution using dual-tilt electron tomography. We found that the S2814D mutation, by itself, significantly expanded the dyad and reorganized the tetramers, suggesting a direct link between the phosphorylation state of the tetramer and its microarchitecture. S2808A and S2814A mutant mice, as well as wild types, had significant expansions of their dyads in response to isoproterenol, while S2030A mutants did not. In agreement with functional data from these mutants, S2030 and S2808 were necessary for a complete β-adrenergic response, unlike S2814 mutants. Additionally, all mutants had unique effects on the organization of their tetramer arrays. Lastly, the correlation of structural with functional changes suggests that tetramer–tetramer contacts play an important functional role. We thus conclude that both the size of the dyad and the arrangement of the tetramers are linked to the state of the channel tetramer and can be dynamically altered by a β-adrenergic receptor agonist.

Funder

Canadian Institutes of Health Research

National Institutes of Health

University of British Columbia

Publisher

Rockefeller University Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3