Contraction kinetics of intact and skinned frog muscle fibers and degree of activation. Effects of intracellular Ca2+ on unloaded shortening.

Author:

Gulati J,Babu A

Abstract

This study addresses a long-standing controversy on the effects of the degree of activation on cross-bridge kinetics in vivo, by utilizing isolated intact and skinned fiber preparations. Steady force levels ranging from 0.1 to 0.76 P0 were achieved at 0 degrees C with temperature-step stimulation of intact fibers by varying the amount of caffeine in the bathing medium. The speed of unloaded shortening (by slack test) was found to be practically constant, which suggests that intracellular Ca2+ in the intact preparation has relatively little effect on isotonic shortening. Along with the results on tetanically stimulated fibers (force, P0), we observed a minor but significant trend for the speed to decline with lowered force levels. This trend is explained by the presence of a constant internal load equaling approximately 1% P0. The effect of Ca2+ on the shortening behavior of skinned fibers was examined at 0 and 10 degrees C. At 0 degrees C, there was practically no effect of Ca2+ on the shortening response in slack tests. At 10 degrees C, there was also no Ca2+ effect during the first activation cycle, but in subsequent cycles the speed of shortening was reduced during partial activation, which indicates that there were permanent changes in the fiber properties under these experimental conditions. The latter result could be explained if the internal load had increased to approximately 5% P0 in the modified skinned fiber (compared with 1% P0 in intact fiber). These findings show that isotonic contraction of frog fibers is intrinsically unaffected by the variations in intracellular Ca2+ that modulated the force over a nearly complete range. The results provide support for the idea that Ca2+ influences the force development in vivo by on-off switching mechanisms.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3