Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations

Author:

Fitzhugh Richard1

Affiliation:

1. From the National Institutes of Health, Bethesda.

Abstract

Phase space methods and an analog computer are used to analyze the Hodgkin-Huxley non-linear differential equations for the squid giant axon membrane. V is the membrane potential, m the Na+ activation, h the Na+ inactivation, and n the K+ activation. V and m change rapidly, relative to h and n. The (V, m) phase plane of a reduced system of equations, with h and n held constant at their resting values, has three singular points: a stable resting point, a threshold saddle point, and a stable excited point. When h and n are allowed to vary, recovery and refractoriness result from the movement with subsequent disappearance of the threshold and excited points. Multiplying the time constant of n by 100 or more, and that of h by one-third, reproduces the experimental plateau action potentials obtained with tetraethylammonium by Tasaki and Hagiwara, including the phenomena of abolition and of refractoriness of the plateau duration. The equations have, transiently, two stable states, as found in the real axon by these authors. Since the theoretical membrane conductance curves differ significantly from the experimental ones, further experimental analysis of ionic currents with tetraethylammonium is needed to decide whether the Hodgkin-Huxley model can be generalized to explain these experiments completely.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 411 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Milking a spherical cow: Toy models in neuroscience;European Journal of Neuroscience;2024-09-11

2. Impact of pulse exposure on chimera state in ensemble of FitzHugh–Nagumo systems;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-07-01

3. Exactly Discretized Model of FitzHugh Nagumo Oscillator Using Taylor-Lie Approach;2024 6th International Conference on Energy, Power and Environment (ICEPE);2024-06-20

4. Firing and synchronous of two memristive neurons;Computational and Applied Mathematics;2024-06-07

5. Cupolets: History, Theory, and Applications;Dynamics;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3