THEORY AND MEASUREMENT OF VISUAL MECHANISMS

Author:

Crozier W. J.1,Holway A. H.1

Affiliation:

1. From the Biological Laboratories, Harvard University, Cambridge

Abstract

Monocular threshold stimulus intensities (ΔIo, photons) were measured along the 0–180° meridian of human retinae for three observers. The test image was small (= 0.08°) and of short duration (= 0.20 second). ΔIo was found to decrease as the angular distance from the fovea was increased. Actual counts of the number of retinal elements per mm.2 along the 0–180° meridian (Østerberg) were compared with the obtained results. No direct correlation was found to exist between visual sensitivity and the number of retinal elements. Binocular threshold stimuli were also measured along the same meridian. The form of the function relating binocular visual sensitivity and retinal position was discovered to be essentially similar to that for monocular sensitivity, but is more symmetrical about the center of the fovea. The magnitude of the binocular measurement is in each case smaller than that of the monocular threshold stimulus intensity for the more sensitive eye. The ratio is statistically equal to 1.4 (a fact which suggests Piper's rule). These results are shown to be consistent with the hypothesis that the process critical for the eventuation of the threshold response is localized in the central nervous system. They are not consistent with the view that the quantitative properties of visual data are directly determined by properties of the peripheral retina.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaze mechanisms enabling the detection of faint stars in the night sky;European Journal of Neuroscience;2021-07-16

2. Clinical Application of Infrared-Light Microperimetry in the Assessment of Scotopic-Eye Sensitivity;Translational Vision Science & Technology;2020-07-07

3. A self-similar stack model for human and machine vision;Biological Cybernetics;1986-04

4. Psychophysics of lateral tachistoscopic presentation;Brain and Cognition;1986-04

5. Dark adaptation with interposed white adapting fields;Graefe's Archive for Clinical and Experimental Ophthalmology;1982-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3