Gating of the Bacterial Sodium Channel, NaChBac

Author:

Kuzmenkin Alexey1,Bezanilla Francisco123,Correa Ana M.1

Affiliation:

1. Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095

2. Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095

3. Centro de Estudios Científicos, Valdivia, Chile

Abstract

The bacterial sodium channel, NaChBac, from Bacillus halodurans provides an excellent model to study structure–function relationships of voltage-gated ion channels. It can be expressed in mammalian cells for functional studies as well as in bacterial cultures as starting material for protein purification for fine biochemical and biophysical studies. Macroscopic functional properties of NaChBac have been described previously (Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001. Science. 294:2372–2375). In this study, we report gating current properties of NaChBac expressed in COS-1 cells. Upon depolarization of the membrane, gating currents appeared as upward inflections preceding the ionic currents. Gating currents were detectable at −90 mV while holding at −150 mV. Charge–voltage (Q–V) curves showed sigmoidal dependence on voltage with gating charge saturating at −10 mV. Charge movement was shifted by −22 mV relative to the conductance–voltage curve, indicating the presence of more than one closed state. Consistent with this was the Cole-Moore shift of 533 μs observed for a change in preconditioning voltage from −160 to −80 mV. The total gating charge was estimated to be 16 elementary charges per channel. Charge immobilization caused by prolonged depolarization was also observed; Q–V curves were shifted by approximately −60 mV to hyperpolarized potentials when cells were held at 0 mV. The kinetic properties of NaChBac were simulated by simultaneous fit of sodium currents at various voltages to a sequential kinetic model. Gating current kinetics predicted from ionic current experiments resembled the experimental data, indicating that gating currents are coupled to activation of NaChBac and confirming the assertion that this channel undergoes several transitions between closed states before channel opening. The results indicate that NaChBac has several closed states with voltage-dependent transitions between them realized by translocation of gating charge that causes activation of the channel.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3