Determinants of Anion Permeation in the Second Transmembrane Domain of the Mouse Bestrophin-2 Chloride Channel

Author:

Qu Zhiqiang1,Hartzell Criss1

Affiliation:

1. Department of Cell Biology and the Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322

Abstract

Bestrophins have been proposed to constitute a new family of Cl channels that are activated by cytosolic Ca. We showed previously that mutation of serine-79 to cysteine in mouse bestrophin-2 (mBest2) altered the relative permeability and conductance to SCN. In this paper, we have overexpressed various mutant constructs of mBest2 in HEK-293 cells to explore the contributions to anion selectivity of serine-79 and other amino acids (V78, F80, G83, F84, V86, and T87) located in the putative second transmembrane domain (TMD2). Residues selected for mutagenesis were distributed throughout TMD2, but mutations at all positions changed the selectivity. The effects on selectivity were rather modest. Replacement of residues 78, 79, 80, 83, 84, 86, or 87 with cysteine had similar effects: the permeability of the channel to SCN relative to Cl (PSCN/PCl) was decreased three- to fourfold and the relative SCN conductance (GSCN/GCl) was increased five- to tenfold. Side chains at positions 78 and 80 appeared to be situated close to the permeant anion, because the electrostatic charge at these positions affected permeation in specific ways. The effects of charged sulfhydryl-reactive MTS reagents were the opposite in the V78C and F80C mutants and the effects were partially mimicked by substitution of F80 with charged amino acids. In S79T, switching from Cl to SCN caused slow changes in GSCN/GCl (τ = 16.6 s), suggesting that SCN binding to the channel altered channel gating as well as conductance. The data in this paper and other data support a model in which TMD2 plays an important role in forming the bestrophin pore. We suggest that the major determinant in anion permeation involves partitioning of the permeant anion into an aqueous pore whose structural features are rather flexible. Furthermore, anion permeation and gating may be linked.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3