Photoreceptors of Nrl −/− Mice Coexpress Functional S- and M-cone Opsins Having Distinct Inactivation Mechanisms

Author:

Nikonov Sergei S.1,Daniele Lauren L.1,Zhu Xuemei2,Craft Cheryl M.2,Swaroop Anand3,Pugh Edward N.1

Affiliation:

1. F. M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104

2. Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, and Department of Ophthalmology and Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033

3. Department of Ophthalmology and Visual Sciences and Department of Human Genetics, University of Michigan, Ann Arbor, MI 48105

Abstract

The retinas of mice null for the neural retina leucine zipper transcription factor (Nrl −/−) contain no rods but are populated instead with photoreceptors that on ultrastructural, histochemical, and molecular criteria appear cone like. To characterize these photoreceptors functionally, responses of single photoreceptors of Nrl −/− mice were recorded with suction pipettes at 35–37°C and compared with the responses of rods of WT mice. Recordings were made either in the conventional manner, with the outer segment (OS) drawn into the pipette (“OS in”), or in a novel configuration with a portion of the inner segment drawn in (“OS out”). Nrl −/− photoreceptor responses recorded in the OS-out configuration were much faster than those of WT rods: for dim-flash responses tpeak = 91 ms vs. 215 ms; for saturating flashes, dominant recovery time constants, τD = 110 ms vs. 240 ms, respectively. Nrl −/− photoreceptors in the OS-in configuration had reduced amplification, sensitivity, and slowed recovery kinetics, but the recording configuration had no effect on rod response properties, suggesting Nrl −/− outer segments to be more susceptible to damage. Functional coexpression of two cone pigments in a single mammalian photoreceptor was established for the first time; the responses of every Nrl −/− cell were driven by both the short-wave (S, λmax ≈ 360 nm) and the mid-wave (M, λmax ≈ 510 nm) mouse cone pigment; the apparent ratio of coexpressed M-pigment varied from 1:1 to 1:3,000 in a manner reflecting a dorso-ventral retinal position gradient. The role of the G-protein receptor kinase Grk1 in cone pigment inactivation was investigated in recordings from Nrl −/−/Grk1−/− photoreceptors. Dim-flash responses of cells driven by either the S- or the M-cone pigment were slowed 2.8-fold and 7.5-fold, respectively, in the absence of Grk1; the inactivation of the M-pigment response was much more seriously retarded. Thus, Grk1 is essential to normal inactivation of both S- and M-mouse cone opsins, but S-opsin has access to a relatively effective, Grk1-independent inactivation pathway.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3