The Chemistry of Sites Binding Rubidium in Chlorella

Author:

Cohen Dan1

Affiliation:

1. From the Department of Agriculture, University of Oxford, England.

Abstract

The chemistry of sites that specifically bind Rb in Chlorella pyrenoidosa has been investigated by changing or modifying specific chemical groups or bonds in the cell and observing changes in binding capacity. Boiling the cells in water or in 70 per cent ethanol did not affect binding capacities of the sites. These results suggest that the integrity of the sites is independent of both hydrogen bonds and hydrophobic bonds, and that the sites, therefore, do not consist of a protein or protein-lipid complex. At 30°C, both 1 M HCL and 0.5 to 1 M NaOH rapidly inactivated 70 per cent of the sites, but over a range of Ph 4.4 to 11.3, there was no effect. The sites are inactivated by strong chelating agents at 0.05 to 0.2 M and by reagents which reduce trivalent iron, and 4 to 10 atoms of iron per site are removed from the cells. Prolonged incubation in iron solutions, but not in solutions of Cu, Mn, or Mg, reversed to a considerable extent inactivation by EDTA. It is suggested that the sites probably bind trivalent iron tightly as chelation bridges which are essential to their structure. These structural bridges are broken when iron is removed by chelating agents or reduction, and are reformed in the presence of iron. Other experimental evidence indicates that amine, sulfhydryl, and carbonyl groups are not structural components of the sites.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of Ion Transport through Plant Cell Membranes;International Review of Cytology;1973

2. Selectivity and Ion Transport in Excised Bean Hypocotyls;Physiologia Plantarum;1970-10

3. The influx of potassium into Chlorella pyrenoidosa;Biochimica et Biophysica Acta (BBA) - Biomembranes;1968-09

4. Energy Sources for the Absorption of Rubidium by Chlorella;Physiologia Plantarum;1968-02

5. References;Problems of Cell Permeability;1966

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3