Water Loss during Contracture of Muscle

Author:

Kaminer Benjamin1

Affiliation:

1. From the Institute for Muscle Research at the Marine Biological Laboratory, Woods Hole

Abstract

The relationship of contracture and exudation of water in frozenthawed frog muscle was studied. With maximum shortening, there was a water loss of 35 per cent of the weight of muscle. By restricting the contraction, it was demonstrated that the amount of water loss was proportional to the degree of shortening, there being no significant loss with isometric contraction. Muscle already shortened by tetanic stimulation also exuded water on subsequent freezing and thawing. The force of contraction could be reduced by depleting the muscle of calcium and it was shown that the amount of water exuded was also proportional to the tensile ability of the muscle. In a smooth muscle (anterior byssus retractor of Mytilus) which did not contract vigorously only a little water exuded. Contracture produced by caffeine was similarly associated with a loss of water. Microscopic studies revealed a disruption of the sarcomeres of the frozen-thawed muscle which contracted; glycerol-extracted and calcium-depleted muscles, which did not contract on freeze-thawing, did not show such disruption. Freezing and thawing of actomyosin caused a reversible syneresis of the protein. It is concluded that the exudation of the water is not merely due to the freezing and thawing but is also dependent on the contractile events.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Active hydraulics and odd elasticity of muscle fibres;Nature Physics;2024-07-08

2. Active muscular hydraulics;2022-02-20

3. Effect of isosmotic removal of extracellular Na+ on cell volume and membrane potential in muscle cells;American Journal of Physiology-Cell Physiology;1994-09-01

4. Calcium fluxes accompanying the action of 5-hydroxytryptamine on mussel hearts;Comparative Biochemistry and Physiology Part C: Comparative Pharmacology;1981-01

5. 45Ca efflux from anterior byssus retractor muscle in phasic and catch contraction;American Journal of Physiology-Legacy Content;1975-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3