Evidences from Action Spectra for a Specific Participation of Chlorophyll b in Photosynthesis

Author:

Myers Jack1,French C. S.1

Affiliation:

1. From the Department of Plant Biology, Carnegie Institution of Washington, Stanford, California.

Abstract

Rate of oxygen evolution in photosynthesis was measured as the current from a polarized platinum electrode covered by a thin layer of Chlorella. The arrangement gave a reproducibly measurable rate of photosynthesis proportional to light intensity at the low levels used and gave rapid response to changes in illumination. Two phenomena have been explored. The Emerson effect was observed as an enhancement of photosynthesis in long wavelength red light (700 mµ) when shorter wavelengths were added. Two light beams of wavelengths 653 and 700 mµ when presented together gave a photosynthetic rate about 25 per cent higher than the sum of the rates obtained separately. Large and reproducible transients in rate of oxygen evolution were observed accompanying change in illumination between two wavelengths adjusted in intensity to support equal steady rates of photosynthesis. The transients were found not to be specifically related to long wavelength red light. Both enhancement and the transients have identical action spectra which are interpreted as demonstrating a specific photochemical participation of chlorophyll b.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Standard units for ElectroChromic Shift measurements in plant biology;Journal of Experimental Botany;2021-06-05

2. Bibliography;Plant Cell Biology;2019

3. Explaining Photosynthesis;History, Philosophy and Theory of the Life Sciences;2015

4. Evolution of the Z-Scheme of Electron Transport in Oxygenic Photosynthesis;Advanced Topics in Science and Technology in China;2013

5. A tribute to Thomas Roosevelt Punnett, Jr. (1926–2008);Photosynthesis Research;2011-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3