FURTHER STUDIES ON THE KINETICS OF OSMOSIS IN LIVING CELLS

Author:

Lucké Balduin1,Hartline H. Keffer1,McCutcheon Morton1

Affiliation:

1. From the Laboratory of Pathology, School of Medicine, the Johnson Foundation for Medical Physics, University of Pennsylvania, Philadelphia, and the Marine Biological Laboratory, Woods Hole

Abstract

Using unfertilized eggs of Arbacia punctulata as natural osmometers an attempt has been made to account for the course of swelling and shrinking of these cells in anisotonic solutions by means of the laws governing osmosis and diffusion. The method employed has been to compute permeability of the cell to water, as measured by the rate of volume change per unit of cell surface per unit of osmotic pressure outstanding between the cell and its medium. Permeability to water as here defined and as somewhat differently defined by Northrop is approximately constant during swelling and shrinking, at least for the first several minutes of these processes. Permeability is found to be independent of the osmotic pressure of the solution in which cells are swelling. Water is found to leave cells more readily than it enters, that is, permeability is greater during exosmosis than during endosmosis.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Osmotic Processor for Enabling Sensitive and Rapid Biomarker Detection via Lateral Flow Assays;Frontiers in Bioengineering and Biotechnology;2022-06-01

2. 2.5 Forward Osmosis and Forward Osmosis Membranes;Comprehensive Membrane Science and Engineering;2017

3. Permeability of Membranes;Permeability of Biological Membranes;2016

4. Deformation and osmotic swelling of an elastic membrane capsule in Stokes flows by the immersed interface method;Chemical Engineering Science;2010-02

5. Theory of Flow and Transport Processes in Pores and Porous Media;Ciba Foundation Symposium - Circulatory and Respiratory Mass Transport;2008-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3