The Muscle Chloride Channel ClC-1 Has a Double-Barreled Appearance that Is Differentially Affected in Dominant and Recessive Myotonia

Author:

Saviane Chiara1,Conti Franco1,Pusch Michael1

Affiliation:

1. From the Istituto di Cibernetica e Biofisica, CNR, I-16149 Genova, Italy

Abstract

Single-channel recordings of the currents mediated by the muscle Cl− channel, ClC-1, expressed in Xenopus oocytes, provide the first direct evidence that this channel has two equidistant open conductance levels like the Torpedo ClC-0 prototype. As for the case of ClC-0, the probabilities and dwell times of the closed and conducting states are consistent with the presence of two independently gated pathways with ≈ 1.2 pS conductance enabled in parallel via a common gate. However, the voltage dependence of the common gate is different and the kinetics are much faster than for ClC-0. Estimates of single-channel parameters from the analysis of macroscopic current fluctuations agree with those from single-channel recordings. Fluctuation analysis was used to characterize changes in the apparent double-gate behavior of the ClC-1 mutations I290M and I556N causing, respectively, a dominant and a recessive form of myotonia. We find that both mutations reduce about equally the open probability of single protopores and that mutation I290M yields a stronger reduction of the common gate open probability than mutation I556N. Our results suggest that the mammalian ClC-homologues have the same structure and mechanism proposed for the Torpedo channel ClC-0. Differential effects on the two gates that appear to modulate the activation of ClC-1 channels may be important determinants for the different patterns of inheritance of dominant and recessive ClC-1 mutations.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3