Effects of D2O and Osmotic Gradients on Potential and Resistance of the Isolated Frog Skin

Author:

Lindley Barry D.1,Hoshiko T.1,Leb D. E.1

Affiliation:

1. From the Department of Physiology, Western Reserve University School of Medicine, Cleveland

Abstract

Exposure of the outside surface of isolated frog skin (R. pipiens and R. catesbeiana) to sulfate solution made up with D2O decreased skin potential and resistance. Exposure of the inside surface to D2O solution decreased the potential slightly but increased the resistance. The changes were linearly related to the D2O concentration. Since D2O acts like a hyperosmotic solution, the skin potential and resistance were studied upon exposure to solution made hyperosmotic by addition of sucrose, mannitol, acetamide, urea, thiourea, Na2SO4, or K2SO4. Skin potential and resistance decreased when the outside solution was made hyperosmotic. The changes depended upon the concentration and the nature of the solute. Thiourea and urea solutions were the most effective. Treatment of the inside surface gave relatively small decreases in potential; the resistance either increased or remained unchanged. These effects appeared to depend upon the direction of the osmotic gradient across the skin rather than upon the value of the osmolarity compared to normal body fluids. Experiments with a series of six polyhydric alcohols from methanol to mannitol and the polysaccharides, sucrose and raffinose, showed adonitol with 5 carbons to decrease the potential the most. Smaller and larger compounds of this set gave lesser effects. As yet no consistent explanation of the effects is forthcoming, but their demonstration calls for caution in the indiscriminate use of solutes such as mannitol or sucrose "to make up the osmolality" and in the neglect of urea because "it penetrates freely."

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3