Control of active proton transport in turtle urinary bladder by cell pH.

Author:

Cohen L H,Steinmetz P R

Abstract

The rate of active H+ secretion (JH) across the luminal cell membrane of the turtle bladder decreases linearly with the chemical (delta pH) or electrical potential gradient (delta psi) against which secretion occurs. To examine the control of JH from the cell side of the pump, acid-base changes were imposed on the cellular compartment by increasing serosal[HCO3-] at constant PCO2 or by varying PCO2 at constant [HCO3-]. When serosal [HCO3-] was increased from 0 to 60 mM, cell [H+] decreased, as estimated by the 5,5-dimethyloxazoladine-2,4-dione method. JH was a saturable function of cell [H+], with an apparent Km of 25 nM. When PCO2 was varied between 1 and 20% at various serosal Km of 25 nM. When PCO2 was varied between 1 and 20% at various serosal [HCO3-], the PCO2 required to reach a maximal JH increased with [HCO3-] so that JH was a function of cell [H+] rather than of cell [HCO3-] or CO2. The proton pump was controlled asymmetrically with respect to the pH component of the electrochemical potential for protons, microH. On the cell side of the pump, a delta pH of < 1 U was required to vary JH between maximal and zero values, whereas on the luminal side a delta pH of 3 U was required. Cell [H+] regulates JH by determining the availability of H+ to the pump in a relationship resembling Michaelis-Menten kinetics. Increasing luminal [H+] generates an energy barrier at a luminal pH near 4.4 that equals the free energy (per H+ translocated) of the metabolic driving reaction.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epithelial transport in The Journal of General Physiology;Journal of General Physiology;2017-09-20

2. Cellular Mechanisms of Renal Tubular Acidification;Seldin and Giebisch's The Kidney;2013

3. Cellular Mechanisms of Renal Tubular Acidification;Seldin and Giebisch's The Kidney;2008

4. Epithelial pH and Ion Transport Regulation by Proton Pumps and Exchangers;Novartis Foundation Symposia;2007-09-28

5. Regulation of Ion and Water Transport by Hydrogen Ions in High Resistance Epithelia;Mechanisms of Systemic Regulation: Acid—Base Regulation, Ion-Transfer and Metabolism;1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3