The Mechanochemistry of Muscular Contraction

Author:

Carlson Francis D.1,Siger Alvin1

Affiliation:

1. From the Thomas C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore

Abstract

The dependence of PC1 and ATP1 dephosphorylation on the number of isometric twitches in the iodoacetate-nitrogen-poisoned muscle has been examined. There is no net dephosphorylation of adenosinetriphosphate. PC dephosphorylation varies linearly with the number of twitches and produces equivalent amounts of C1 and P1i.1 Iodoacetate concentrations which block the enzyme, creatine phosphokinase, render the muscle non-contractile. A value of 0.286 µmole/gm. for the amount of PC split per twitch is obtained which gives a value of -9.62 kcal./mole for the "physiological" heat of hydrolysis of PC in agreement with expectations based on thermochemical data. In a single maximal isometric twitch it is estimated that 2 to 3 PC molecules are dephosphorylated per myosin molecule, or 1 per actin molecule. The results support the view that under the conditions of these experiments PC dephosphorylation is the net energy yielding reaction. The in vivo stoichiometry of the mechano-chemistry of contraction revealed by these studies on the one hand, and the known stoichiometry of actin polymerization and its coupling to the creatine phosphokinase system on the other are strikingly similar and strongly suggest that the reversible polymerization of actin is involved in a major way in the contraction-relaxation-recovery cycle of muscle.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Historical Perspective: Heat production and chemical change in muscle. Roger C. Woledge;Progress in Biophysics and Molecular Biology;2021-05

2. Revisiting a classic: Muscles, Reflexes, and Locomotion by McMahon;Biomechanics and Gait Analysis;2020

3. Mechanics and Energetics of Muscular Contraction: Before Sliding Filaments and into the Modern Era;Mechanism of Muscular Contraction;2014

4. On the kinetics of anaerobic power;Theoretical Biology and Medical Modelling;2012-07-25

5. Skeletal Muscle Excitability;Cell Physiology Source Book;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3