ATP Splitting and Calcium Binding by Brain Microsomes Measured with a Rapid Perfusion Method

Author:

Alonso Guillermo1,Walser MacKenzie1

Affiliation:

1. From the Department of Pharmacology and Experimental Therapeutics and the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Abstract

Rat brain microsomes, immobilized on a filter, were perfused with ATP-containing solutions in a device which made possible rapid change of perfusion media and frequent sampling of effluent. Inorganic phosphate production could be measured 10 times per sec. When ATP, sodium, or potassium was absent from the first perfusion medium and present in a second, and introduced without interrupting flow, phosphate output rose within a few tenths of a second. Inhibition by ouabain began within 0.3 sec but did not become maximal for at least 10 sec. Rapid binding of ouabain was minimal or absent, as was rapid release of ouabain on introducing potassium abruptly. Although the preparation bound some calcium reversibly, no measurable uptake of calcium occurred coincident with activation by ATP or by potassium, and no measurable release of calcium occurred coincident with the onset of ouabain inhibition. However, activation by sodium was consistently associated with simultaneous release (within < 1 sec) of calcium, averaging 46 pmole per mg of protein. Calcium release in response to sodium also occurred in the absence of ATP or in the presence of ouabain. At 0°C sodium produced neither activation nor calcium release. The results are consistent with the possibility that sodium and calcium are competitively bound, even in the absence of ATP, to an active site on the enzyme distinct from the sites of potassium activation or glycoside inhibition.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3