Ion Transport through Monolayers and Interfacial Films

Author:

Miller I. R.1

Affiliation:

1. From the Department of Polymer Research, The Weizmann Institute of Science, Rehovoth, Israel

Abstract

Ion transport through monolayers and through several molecules of thick films at the mercury/water interface is discussed. The permeability of the monolayer is described by a rate constant, kc. The permeability of a thin but not monomolecular film is expressed as a function of the thickness of the film, the diffusion coefficient of the permeant in the film, and the distribution coefficient between the film and the bulk of the solution. The rate constant kc is expressed in terms of absolute rate processes. In the absence of specific interactions, the activation energy is composed of three terms: (a) electrostatic interaction between the permeating ion and the charged monolayer, (b) monolayer compression work of forming a hole for passage of the ions, and (c) energy of boundary line formation between the monolayer and the hole. The contribution of the third term is especially marked in condensed monolayers. Ions are bound weakly to the monolayers of the dipolar ion lecithin, which complicates the transport problem in this system. The retardation of oxygen reduction by the lecithin monolayer is of particular interest.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Are there any analogies between electrosorption layers of organic compounds and signal-transmitting biomembranes?;Journal of Electroanalytical Chemistry and Interfacial Electrochemistry;1979-06

2. Ion exchange kinetics in an adsorbed protein film;Bioelectrochemistry and Bioenergetics;1976-01

3. Ion transport and oscillatory phenomena in monolayers adsorbed on electrodes;Bioelectrochemistry and Bioenergetics;1974-12

4. Polarographic studies of membrane particles containing Na−K ATPase;The Journal of Membrane Biology;1973-12

5. Transport of ions across lipid monolayers. IV. Reduction of polarographic currents by spread monolayers;Journal of Colloid and Interface Science;1973-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3