Stabilization of a prokaryotic LAT transporter by random mutagenesis

Author:

Rodríguez-Banqueri Arturo1,Errasti-Murugarren Ekaitz1,Bartoccioni Paola12,Kowalczyk Lukasz3,Perálvarez-Marín Alex4,Palacín Manuel125,Vázquez-Ibar José Luis6

Affiliation:

1. Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain

2. Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain

3. Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia

4. Biophysics Unit, Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Cerdanyola del Vallés, Spain

5. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain

6. Institute for Integrative Biology of the Cell (I2BC), CEA, French National Centre for Scientific Research (CNRS) UMR 9198, University Paris-Sud, University Paris-Saclay, F-91198 Gif-sur-Yvette, France

Abstract

The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis l-serine/l-threonine exchanger is the best-known prokaryotic paradigm of the mammalian l–amino acid transporter (LAT) family. Unfortunately, SteT’s lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest.

Funder

Spanish Ministry of Science and Innovation

Fundació La Marató TV3

MINECO

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3