Membrane potential and Ca2+ concentration dependence on pressure and vasoactive agents in arterial smooth muscle: A model

Author:

Karlin Arthur1

Affiliation:

1. Department of Biochemistry and Molecular Biophysics, Department of Physiology and Cellular Biophysics, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032

Abstract

Arterial smooth muscle (SM) cells respond autonomously to changes in intravascular pressure, adjusting tension to maintain vessel diameter. The values of membrane potential (Vm) and sarcoplasmic Ca2+ concentration (Cain) within minutes of a change in pressure are the results of two opposing pathways, both of which use Ca2+ as a signal. This works because the two Ca2+-signaling pathways are confined to distinct microdomains in which the Ca2+ concentrations needed to activate key channels are transiently higher than Cain. A mathematical model of an isolated arterial SM cell is presented that incorporates the two types of microdomains. The first type consists of junctions between cisternae of the peripheral sarcoplasmic reticulum (SR), containing ryanodine receptors (RyRs), and the sarcolemma, containing voltage- and Ca2+-activated K+ (BK) channels. These junctional microdomains promote hyperpolarization, reduced Cain, and relaxation. The second type is postulated to form around stretch-activated nonspecific cation channels and neighboring Ca2+-activated Cl− channels, and promotes the opposite (depolarization, increased Cain, and contraction). The model includes three additional compartments: the sarcoplasm, the central SR lumen, and the peripheral SR lumen. It incorporates 37 protein components. In addition to pressure, the model accommodates inputs of α- and β-adrenergic agonists, ATP, 11,12-epoxyeicosatrienoic acid, and nitric oxide (NO). The parameters of the equations were adjusted to obtain a close fit to reported Vm and Cain as functions of pressure, which have been determined in cerebral arteries. The simulations were insensitive to ±10% changes in most of the parameters. The model also simulated the effects of inhibiting RyR, BK, or voltage-activated Ca2+ channels on Vm and Cain. Deletion of BK β1 subunits is known to increase arterial–SM tension. In the model, deletion of β1 raised Cain at all pressures, and these increases were reversed by NO.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3