Affiliation:
1. From the Department of Biochemistry, The Public Health Research Institute of The City of New York, Inc.
Abstract
Control of oxidation is the key mechanism in the regulation of energy metabolism. In glycolysis the oxidation of glyceraldehyde-3-phosphate is controlled by DPNH, which inhibits glyceraldehyde-3-phosphate dehydrogenase. In oxidative phosphorylation the inhibition of electron flow from DPNH to oxygen, called "respiratory control," is the subject of this paper. After a discussion of the physiological significance of the "tight coupling" between phosphorylation and oxidation, studies on "loosely coupled" submitochondrial particles are reported. These particles are capable of oxidative phosphorylation in the presence of a suitable phosphate acceptor system, but in contrast to controlled, intact mitochondria they oxidize DPNH in the absence of phosphate and ADP. The addition of o-phenanthroline to submitochondrial particles gives rise to an inhibition of respiration, which is partly reversed by phosphate and ADP or by dinitrophenol. The properties of this model system of respiratory control will be described.
Publisher
Rockefeller University Press
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献